

listcompare
A file comparison tool

by Markus Gnam
© 2024

Program version: 3.5.2.8
Document version: 000119

© Markus Gnam 2024 listcompare tool documentation Page 1 of 38

Table of contents

USAGE ... 3

OPTIONS ... 3

Notes .. 4

Simple Usage... 5

Key files ... 5

Example 1 .. 5

Value files .. 6

Example 2 .. 6

Advanced Usage .. 8

Join files .. 8

Example 3 .. 8

Left join files .. 8

CSV file format .. 9

Parsing standard “RFC 4180” ... 9

Parsing standard “Delimiter only” .. 9

Difference files .. 9

General Difference method --diff (short option -d) .. 9

Example 4 .. 9

CSV file Difference method --difa (short option -a)... 10

Example 5 .. 10

Exclude fields with option --dife ... 12

Include fields with option --difi .. 13

Special cases for values .. 14

Skip values with skipvalues.txt ... 14

More functions with --difa_fun .. 15

Example 6 .. 15

Global functions --difa_ci and –difa_tr ... 16

Compare only the first duplicate row ... 17

Comparing the same file sequentially .. 17

Example 7 .. 17

Info fields ... 17

Special comparison levels with --difa_level .. 18

difa_level=0 ... 19

© Markus Gnam 2024 listcompare tool documentation Page 2 of 38

difa_level=1 ... 19

difa_level=2 ... 20

difa_level=3 ... 21

difa_level=4 ... 21

difa_level=5 ... 22

difa_level=6 ... 22

difa_level=7 ... 23

difa_level=8 ... 24

Example 8 .. 24

Use of --difi=keys.. 25

difa_level=9 ... 25

Example 9 .. 26

Use of --difa_info1=all .. 26

Special cases for keys: Parts and concatenation, functions .. 27

More about functions .. 27

Special cases: Conditions ... 28

Special cases: --tabcon... 30

Special cases: --conuni ... 30

Special cases: --key=line_no .. 31

Special cases: --key=0 .. 31

Special cases: Field separator .. 31

Special cases: UTF-8 .. 31

Special cases: Large file support .. 31

Special cases: Debug files .. 31

Special cases: headers fields .. 31

Short excursus on Set Operations .. 32

Special cases: Output options .. 32

Output files ... 32

listcompareGI: A graphical user interface for listcompare .. 34

Files section ... 35

Options section ... 35

Action section ... 35

Output section .. 36

Version history .. 37

© Markus Gnam 2024 listcompare tool documentation Page 3 of 38

listcompare.exe - Compare two lists based on a key

(c) Markus Gnam 2024. Version 3.5.2.8 20240401

USAGE: listcompare <file1> <file2> [options]

Compare two files based on a key given for each file.

They don't need to be sorted. There is no size limit.

Defaults, if no options are specified:

Key for comparisons for both files is the first field.

Default field separator is white space (spaces/tabs).

Result output (if keys for these files exist):

key in both files => File: file1_and_file2.txt

key only in file1 => File: only_in_file1.txt

key only in file2 => File: only_in_file2.txt

For additional output of the value files use "-v"

Value files contain the whole line where the key occurs.

For all options and more details type "listcompare --help"

OPTIONS: Details about all options and their defaults:
Mandatory arguments to long options are mandatory for short options too.

-f, --fs=FIELDSEP The field separator [default: " "]

 E.g. tabulator: --fs=\t or one space: --fs="[]"

 --fs1=FIELDSEP The field separator of file 1 [default: " "]

 --fs2=FIELDSEP The field separator of file 2 [default: " "]

-k, --key=FIELDNO The field number to compare [default: 1]

 Use --key=0 to get the whole line as key.

 For Special cases see manual. E.g. part of field 8:

 Field No[,Substr Pos][,Substr Length]: --key=8,1,4

 A field name instead of a field number can be used:

 E.g. --key=7 or with fname=: --key=fname=last_name

 --key1=FIELDNO The field number of file 1 to compare [default: 1]

 --key2=FIELDNO The field number of file 2 to compare [default: 1]

-v, --value={0,1} Generate files with values (whole lines)

 additional to the key files [default: 0]

 --value1=FL Optional field list for value file 1 [default 0]

 --value2=FL Optional field list for value file 2 [default 0]

-h, --header=N Take care of N header lines [default: 0]

 --header1=N Take care of N header lines of file 1 [default: 0]

 --header2=N Take care of N header lines of file 2 [default: 0]

-j, --join={0,1} Generate "inner join" files [default: 0]

 --join1=FL Optional field list for join file 1 [default 0]

 --join2=FL Optional field list for join file 2 [default 0]

 --joinleft={0,1} Generate "left join" files [default: 0]

 --joinhint={0,1} Separate join files by listcompare_hint [default: 1]

 --join_ofd={0,1} Compare only first file 2 duplicate key [default: 0]

-c, --count={0,1} Count the result files [default: 0]

-p, --print={0,1,2} Print the result files: all 1, diffs 2, [default: 0]

 --csv1={0,1} Parse CSV file 1 with RFC 4180 standard [default: 0]

 --csv2={0,1} Parse CSV file 2 with RFC 4180 standard [default: 0]

listcompare.exe - Compare two lists based on a key

© Markus Gnam 2024 listcompare tool documentation Page 4 of 38

 --lpadzero=N Left pad the key with "0" to length N [default: 0]

 --tabcon={0,1} Use tab as field concatenation suffix [default: 0]

 --conuni={0,1} Union all keys of concatenated fields [default: 0]

-a, --difa={0,1} Generate a difference file for fields [default: 0]

 Use this option to compare all fields with same name

 --dife=FL Optional field list to exclude for --difa comparison

 --difi=FL Optional field list to include for --difa comparison

 --difa_info1=FL file 1 info fields to add with the --difa difference

 --difa_info2=FL file 2 info fields to add with the --difa difference

 --difa_seq={0,1} Compare the same file sequentially [default: 0]

 --difa_ofd={0,1} Compare only first file 2 duplicate key [default: 0]

 --difa_ci={0,1} Case insensitive comparison of fields [default: 0]

 --difa_tr={0,1} Trim all fields before the comparison [default: 0]

 --difa_fun=file Use optional configuration file for difa functions

 e.g. --difa_fun=difa_functions.txt

 --difa_level=N N=0: Show only differences [default]

 N=1: + no differences for all records [0+1]

 N=2: + no differences only for equal records [0+2]

 N=3: + only record keys for all records [0+3]

 N=4: + only record keys for equal records [0+4]

 N=5: + record keys only in file 1 or in file 2 [0+5]

 N=6: = difa_level 1 + difa_level 5 [1+5]

 N=7: = difa_level 2 + difa_level 5 [2+5]

 N=8: = difa_level 3 + difa_level 5 [3+5]

 N=9: = difa_level 4 + difa_level 5 [4+5]

-d, --diff={0,1} Generate a difference file for values [default: 0]

 --dif1=FIELDNO The field number of file 1 to compare [default: 0]

 Use --dif1=0 for the whole line as value. See manual.

 --dif2=FIELDNO The field number of file 2 to compare [default: 0]

 Use --dif2=0 for the whole line as value. See manual.

 --condition1=RE Condition for key1 to be fulfilled [default: 0]

 RE=<Field No>:~:<regex in double quotes>. See manual.

 --condition2=RE Condition for key2 to be fulfilled [default: 0]

 RE=<Field No>:~:<regex in double quotes>. See manual.

 --trim={0,1} Trim the key [default: 1]

 --ltrim={0,1} Ltrim the key [default: 0]

 --rtrim={0,1} Rtrim the key [default: 0]

 --upper={0,1} Set the key to upper case [default: 0]

 --lower={0,1} Set the key to lower case [default: 0]

 --utf81={0,1} For substring use with UTF-8 file 1 [default: 0]

 --utf82={0,1} For substring use with UTF-8 file 2 [default: 0]

 --debug={0,1} Generate debug files [default: 0]

 --largefiles=N Split file into pieces of N megabytes [default: 300]

-?, --help Display this help and exit

 --version Output version information and exit

Notes
 You can use -, -- or / as first option character(s).

 E.g. for the option -d, --diff={0,1} valid alternatives are

 -diff=1, --diff=1, /diff=1

 {0,1} means: Use "0" for No (False) or "1" for Yes (True).

 Using the {0,1} or {0,1,2} options without values means "1".

 For example, you can use either --diff=1 or simply --diff

 For the short option you can use -d, -d=1 or -d 1

© Markus Gnam 2024 listcompare tool documentation Page 5 of 38

Simple Usage

Key files contain the keys.
 Result output of the key files in sorted order (if keys exist):

 key in both files => File: file1_and_file2.txt

 key only in file1 => File: only_in_file1.txt

key only in file2 => File: only_in_file2.txt

 E.g.

 File numbers1.txt with content:

 9

 4

 File numbers2.txt with content:

 2

 9

Example 1 (example1.cmd):
:: Most basic example: Compare keys of first field with FS white space:

listcompare numbers1.txt numbers2.txt

 => Result output of key files:

 file1_and_file2.txt with content:

 9

 only_in_file1.txt with content:

 4

 only_in_file2.txt with content:

2

Venn diagram: file1_and_file2.txt shows the intersection of two lists

numbers1.txt: {9,4} numbers2.txt: {2,9}

Further, key files should normally not contain any duplicates so they are

written (if any) to key_file1_duplicates.txt and key_file2_duplicates.txt

only_in_file1.txt

4
only_in_file2.txt

29
file1_and_file2.txt

© Markus Gnam 2024 listcompare tool documentation Page 6 of 38

Value files contain the whole line where the key occurs.
 Result output of the value files in original order (if values exist):

 key in both files => Values of file1: file1_and_file2_values_file1.txt

 key in both files => Values of file2: file1_and_file2_values_file2.txt

 key only in file1 => Values of file1: only_in_file1_values.txt

 key only in file2 => Values of file2: only_in_file2_values.txt

Value files are interesting if the files contain more than one field.

Example 2 (example2.cmd):
:: Field separator: Tab, Key: Field "last_name", values, one header line:

listcompare names1.txt names2.txt --fs=\t --key=fname=last_name -v -h=1

Goal: Get citizens with same last name who exist in file1 and in file2

file1: names1.txt

Key intersection of file1 and file2 is highlighted with a red rectangle.

file2: names2.txt

Key intersection of file1 and file2 is highlighted with a red rectangle.

 Results, key files (keys uniquely listed in sorted order):
 file1_and_file2.txt:

 Anderson

 Dowd

 McLean

only_in_file1.txt: only_in_file2.txt

Butt Coleman

Mackay Piper

Morgan Wilkins

© Markus Gnam 2024 listcompare tool documentation Page 7 of 38

Further, key files about duplicate keys are written:

key_file1_duplicates.txt: key_file2_duplicates.txt

Mackay Anderson

McLean Coleman

 Results, value files (lines completely listed in original order):
Opposite to key files these value files may contain duplicate key values.

file1_and_file2_values_file1.txt

All lines of file1 with key intersection of file1 and file2 in original order.

file1_and_file2_values_file2.txt

All lines of file2 with key intersection of file1 and file2 in original order.

only_in_file1_values.txt

All lines of file1 with no key intersection of file1 and file2 in original order.

only_in_file2_values.txt

All lines of file2 with no key intersection of file1 and file2 in original order.

© Markus Gnam 2024 listcompare tool documentation Page 8 of 38

Advanced Usage

Join files behave exactly like a database inner join on a key for two
tables. Result file: joined_key_both_in_file1_and_file2_values.txt

Example 3 (example3.cmd):

listcompare fruits1.txt fruits2.txt --fs=\t –-header=1 --

key=fname=fruit_id --join

Input: Content of “fruits1.txt”:

id fruit fruit_id

1 Orange 5

2 Pear 2

3 Apple 9

4 Banana 3

Input: Content of “fruits2.txt”:

id fruit fruit_id

1 Cranberry 18

2 Grapes 7

3 Orange 5

4 Apple 9

Result: Content of “joined_key_both_in_file1_and_file2_values.txt”:

id fruit fruit_id listcompare_hint id fruit fruit_id

1 Orange 5 joined 3 Orange 5

3 Apple 9 joined 4 Apple 9

Explanation: This join is an inner join on the key „fruit_id“. This corresponds to the SQL instruction:
"SELECT a.*, b.* FROM fruits1 AS a JOIN fruits2 AS b ON (a.fruit_id = b.fruit_id)"
The content of the left file is separated from the content of the right file by the „listcompare_hint“ entry
„joined“.

Left join files behave exactly like a database left join on a key for two
tables. Result file: joined_key_file1_leftjoin_values.txt

E.g. (example3.cmd):

listcompare fruits1.txt fruits2.txt --fs=\t –-header=1 --

key=fname=fruit_id --joinleft

Result: Content of “joined_key_file1_leftjoin_values.txt”:

Id fruit fruit_id listcompare_hint id fruit fruit_id

1 Orange 5 joined both 3 Orange 5

2 Pear 2 joined left

3 Apple 9 joined both 4 Apple 9

4 Banana 3 joined left

Explanation: This join is a left join on the key „fruit_id“. This corresponds to the SQL instruction:
"SELECT a.*, b.* FROM fruits1 AS a LEFT JOIN fruits2 AS b ON (a.fruit_id = b.fruit_id)"
The content of the left file is separated from the content of the right file by the
„listcompare_hint“ entries „joined both“ or „joined left“.

Hints: 1. If for some reason you want to omit the listcompare_hint, add the option --joinhint=0
2. The option --join_ofd uses only the first row of duplicate keys from file 2 for the comparison
3. In case of different field separators for the two files, the separator and the csv setting and
the file ending of the first (left) file are used for the join output also for the second (right) file

© Markus Gnam 2024 listcompare tool documentation Page 9 of 38

CSV file format
CSV files, as the name implies, are usually comma separated. However,

they can also be semicolon separated or tab separated or use another

separator. The parsing standard may be "RFC 4180" or "Delimiter Only".

Parsing standard “RFC 4180”
For comma separated and semicolon separated files the recommended parsing

standard is RFC 4180: https://tools.ietf.org/html/rfc4180

In short (http://mcollado.z15.es/gawk-extras/csvmode/doc/csvmode.html):

A CSV file is a sequence of records separated by newline marks. A CSV record is a sequence of
fields separated by commas. A field can contain almost any text. If a field contains commas,
newlines or double quotes it must be enclosed in double quotes. Double quotes inside a field must
be escaped by doubling them.

For RFC 4180 the options --csv1 for file1 and --csv2 for file2 are

needed. The key and difference output is unquoted, the values output is

original, f.i. --fs=, --key1=7 --key2=9 --csv1=1 --csv2=1 --lpadzero=13

Parsing standard “Delimiter only”
For tab separated files (separator “\t”) the recommended parsing standard

is Delimiter only if the file doesn’t contain any newlines. In this case

the tab is an unambiguous delimiter which doesn’t need any quoting since

a tab should not appear inside any field. “Delimiter only” simply means

split the record by the delimiter into fields without further parsing.

This is the default for listcompare.

Difference files

General Difference method --diff (short option -d)
The Option --diff=1 generates the Difference file differences_values.txt

(if results exist). Difference file means different values for the same

key. Default for the value is the whole line. This can be adjusted to

a specific field number or further specifications for dif1 and dif2.

The "Special cases for keys: Parts and concatenation, functions" are

valid for dif1, dif2, too. Especially the trim function is interesting.

E.g. ... --key=1 --diff --dif1=0:trim --dif2=0:trim

Or ... --key=fname=GTIN --diff --dif1=fname=Title --dif2=fname=Title

Example 4 (example4.cmd):
:: Field separator: Tab, Key: Field 7, Difference file, one header line:

listcompare names1.txt names2.txt --fs=\t --key=7 --diff --header=1

 => Result file differences_values.txt with sample content:

 *** Differences file1 and file2 for key: McLean

 Tennessee TN Warren Mc Minnville 37110 Matt McLean

 California CA San Diego San Diego 92126 Blake McLean

Hint: With the --diff option, additional files differences_file1.txt and

differences_file2.txt are created with original content (whole line).

They may be needed for database updates.

https://tools.ietf.org/html/rfc4180
http://mcollado.z15.es/gawk-extras/csvmode/doc/csvmode.html

© Markus Gnam 2024 listcompare tool documentation Page 10 of 38

CSV file Difference method --difa (short option -a)
The -a option compares CSV files based on the key. Use it to simply

compare all fields with same name. The file “differences_fields.txt”

shows differences for fields with different values for the same key.

Example 5 (example5.cmd):
:: Field separator: Comma, RFC 4180 parsing, one header line, Key: field

name cust_no, CSV difference file:

listcompare customer1.csv customer2.csv --fs=, --csv1 --csv2 --header=1 -

-key=fname=cust_no -a

file 1: customer1.csv

file 2: customer2.csv

Result: Content of file differences_fields.txt:

CSV files differences report for

file 1: customer1.csv

file 2: customer2.csv

INFORMATION

fields: key field is cust_no

file 1 fields not in file 2: last_invoice_date

file 2 fields not in file 1: last_invoice

© Markus Gnam 2024 listcompare tool documentation Page 11 of 38

used option:

compare all fields with same name

compared fields

(file 1 field no. "field name" <-> file 2 field no. "field name"):

1 "cust_no" <-> 1 "cust_no",

2 "name" <-> 3 "name",

3 "address" <-> 4 "address",

4 "city" <-> 5 "city",

5 "state" <-> 6 "state",

6 "zip" <-> 7 "zip"

RESULTS

Record with key "1560" is different:

 file 1 row no. 1 compared with file 2 row no. 2

 difference in file 1 field no. 3 - file 2 field no. 4

 field name: address

 file 1 > 15243 Underwater Fwy. <

 file 2 > 220 Elm Street <

 difference in file 1 field no. 4 - file 2 field no. 5

 field name: city

 file 1 > Marathon <

 file 2 > Venice <

 difference in file 1 field no. 6 - file 2 field no. 7

 field name: zip

 file 1 > 35003 <

 file 2 > 39224 <

Record with key "1563" is different:

 file 1 row no. 2 compared with file 2 row no. 1

 difference in file 1 field no. 3 - file 2 field no. 4

 field name: address

 file 1 > 203 12th Ave. Box 746 <

 file 2 > Box 264 Pleasure Point <

 difference in file 1 field no. 4 - file 2 field no. 5

 field name: city

 file 1 > Giribaldi <

 file 2 > Catalina Island <

 difference in file 1 field no. 5 - file 2 field no. 6

 field name: state

 file 1 > OR <

 file 2 > CA <

 difference in file 1 field no. 6 - file 2 field no. 7

 field name: zip

 file 1 > 91187 <

 file 2 > 90740 <

…

Report hints: The header row is row no. 0, data rows start with row no. 1

The empty value is shown with two spaces with the difference format: > <

© Markus Gnam 2024 listcompare tool documentation Page 12 of 38

Exclude fields with option --dife
--dife=FIELDLIST

If you want to exclude fields from the --difa comparison (compare all

fields with same name), you can list them with the --dife option.

You can use either a list of field names to skip: --dife=fnames=state,zip

or you can list the field numbers of file 1 to skip: --dife=5,6

When using field numbers (instead field names listed after “fnames=”),

this means the field names of these field numbers of file 1 are excluded.

Examples for using this option:

1. Compare all fields with same name except the field name zip

listcompare customer1.csv customer2.csv --fs=, --csv1 --csv2 --header=1 -

-key=fname=cust_no -a --dife=fnames=zip

Alternative: This is the same as using --dife=6

2. Compare all fields with same name except the field names state and zip

listcompare customer1.csv customer2.csv --fs=, --csv1 --csv2 --header=1 -

-key=fname=cust_no -a --dife=fnames=state,zip

Alternative: This is the same as using --dife=5,6

Result: Content of file differences_fields.txt:

CSV files differences report for

file 1: customer1.csv

file 2: customer2.csv

INFORMATION

fields: key field is cust_no

file 1 fields not in file 2: last_invoice_date

file 2 fields not in file 1: last_invoice

excluded fields: state, zip

used option:

compare all fields with same name

except fields listed with option --dife=fnames=state,zip

compared fields

(file 1 field no. "field name" <-> file 2 field no. "field name"):

1 "cust_no" <-> 1 "cust_no",

2 "name" <-> 3 "name",

3 "address" <-> 4 "address",

4 "city" <-> 5 "city"

RESULTS

Record with key "1560" is different:

 file 1 row no. 1 compared with file 2 row no. 2

 difference in file 1 field no. 3 - file 2 field no. 4

 field name: address

 file 1 > 15243 Underwater Fwy. <

 file 2 > 220 Elm Street <

 difference in file 1 field no. 4 - file 2 field no. 5

 field name: city

 file 1 > Marathon <

 file 2 > Venice <

…

© Markus Gnam 2024 listcompare tool documentation Page 13 of 38

Include fields with option --difi
--difi=FIELDLIST

You may have noticed the previous reports listed:

file 1 fields not in file 2: last_invoice_date

file 2 fields not in file 1: last_invoice

So, these field names can’t be compared with the --difa comparison unless

you add an include field list with option --difi to the --difa comparison.

This list consists of comma separated pairs of the field number mappings:

The field numbers of file 1 and 2 inside a pair are separated by a colon.

General syntax: <file 1 field no.>:<file 2 field no.>[,…]

e.g. --difi=7:2 or --difi=2:3,3:4,4:5,5:6,6:7,7:2

Only exactly the fields of this mapping are compared, no other fields.

Examples for using this option:

1. Compare file 1 field no. 7 (=> field name “last_invoice_date”) with

file 2 field no. 2 (=> field name “last_invoice”)

listcompare customer1.csv customer2.csv --fs=, --csv1 --csv2 --header=1 -

-key=fname=cust_no -a --difi=7:2

Result: Content of file differences_fields.txt:

CSV files differences report for

file 1: customer1.csv

file 2: customer2.csv

INFORMATION

fields: key field is cust_no

file 1 fields not in file 2: last_invoice_date

file 2 fields not in file 1: last_invoice

used option:

compare only fields included in mapping

(file 1 field no.:file 2 field no.,...)

with field number pairs mapping option --difi=7:2

compared fields

(file 1 field no. "field name" <-> file 2 field no. "field name"):

7 "last_invoice_date" <-> 2 "last_invoice"

RESULTS

Record with key "1560" is different:

 file 1 row no. 1 compared with file 2 row no. 2

 difference in file 1 field no. 7 - file 2 field no. 2

 field name file 1: last_invoice_date - field name file 2: last_invoice

 file 1 > 09.04.2020 08:14:52 <

 file 2 > 25.10.2020 20:22:30 <

Record with key "1563" is different:

 file 1 row no. 2 compared with file 2 row no. 1

 difference in file 1 field no. 7 - file 2 field no. 2

 field name file 1: last_invoice_date - field name file 2: last_invoice

 file 1 > 09.05.2020 12:05:42 <

 file 2 > 20.10.2020 00:00:28 <

© Markus Gnam 2024 listcompare tool documentation Page 14 of 38

Record with key "1645" is different:

 file 1 row no. 3 compared with file 2 row no. 4

 difference in file 1 field no. 7 - file 2 field no. 2

 field name file 1: last_invoice_date - field name file 2: last_invoice

 file 1 > <

 file 2 > N/A <

…

2. Complete field mapping (all fields) for the customer example files:

listcompare customer1.csv customer2.csv --fs=, --csv1 --csv2 --header=1 -

-key=fname=cust_no -a --difi=1:1,2:3,3:4,4:5,5:6,6:7,7:2

Hints: Actually, --difi=2:3,3:4,4:5,5:6,6:7,7:2 is sufficient because 1:1

is the key field cust_no which has same values because it is used as key.

Instead of field numbers --difi=7:2 field names with fname can be used:

--difi=fname=last_invoice_date:fname=last_invoice

However, if one file contains duplicate field names --difi has to be used

with field numbers. This allows an exact field mapping without any issues.
(If --difi is not used as described, only the rightmost duplicate field of each file is compared)

A further special case is –difi=keys. As an example see Use of --difi=keys.

Special cases for values

Skip values with skipvalues.txt
If you want special values to be treated as same values (e.g. N/A and

empty value) and therefore not to appear as differences, you have to

create a tab separated file named “skipvalues.txt” (or any other name,

like “skipvalues.example.txt”) in the same directory with header line

comment, fieldname1, function1, param1, value1, value2, param2, function2, fieldname2

(To reproduce you can use the file skipvalues.example.txt from the

examples directory in the zip file shipped with this product):

file skipvalues.example.txt:

Example (this is the same example as the previous example, but with a

file skipvalues.example.txt in the directory and the option --difa_fun):

Compare file 1 field no. 7 (=> field name “last_invoice_date”) with file

2 field no. 2 (=> field name “last_invoice”)

listcompare customer1.csv customer2.csv --fs=, --csv1 --csv2 --header=1 -

-key=fname=cust_no -a --difi=7:2 --difa_fun=skipvalues.example.txt

=> compare only fields included in mapping

(file 1 field no.:file 2 field no.,...)

with field number pairs mapping option --difi=7:2

... applying functions file skipvalues.example.txt

© Markus Gnam 2024 listcompare tool documentation Page 15 of 38

This omits the output of this difference:
Record with key "1645" is different:

 file 1 row no. 3 compared with file 2 row no. 4

 difference in file 1 field no. 7 - file 2 field no. 2

 field name file 1: last_invoice_date - field name file 2: last_invoice

 file 1 > <

 file 2 > N/A <

More functions with --difa_fun
On top of using --difa_fun for skipping values by filling value1 and

value2, there are more sophisticated possibilities to use functions:

Example 6 (example6.cmd):
:: Field separator: Tab, one header line, Key: field name cust_no, CSV

difference file, functions configuration file:

listcompare clients1.txt clients2.txt --fs=\t --header=1 --

key=fname=cust_no -a --difa_fun=difa_functions.example.txt

file difa_functions.example.txt:

Available functions are leftpad, rightpad, trim, ltrim, rtrim, lower,

upper, prefix, suffix, replace, match, sort.

If values are to be skipped, they have to be entered as value1 and value2.

As function name “skipvalues” can be used but this name is not evaluated.

The *1 header names are used for file1 and the *2 header names for file2.

The functions are explained in the chapter: “More about functions”.

However, this chapter describes the use of functions for keys so there

are a few differences:

1. param1 and param2: All params for a function have to be entered
comma separated without putting in double quotes in the field

param1 for function1 and param2 for function2. If a param contains

a comma, it has to be escaped with a backtick `.

2. The configuration table is evaluated in the given line order.
Each line action is based upon each other from top to bottom.

© Markus Gnam 2024 listcompare tool documentation Page 16 of 38

3. fieldname1: * means: apply for all fields of file 1.
fieldname2: * means: apply for all fields of file 2.

4. Comment # => This line is skipped.
5. The match function is useful for comparing only a part of a field,

e.g. ^.{2} means that only the first 2 characters of the field are

used for the comparison.

Grouping examples: Use param1: ^.{2}(.*),1 for the substring from

position 3 to the end. The second parameter 1 means: Use grouping

(default 0=no grouping) and cut the first parentheses as result.

More examples: - Cut numbers inside a regex: \"A?N[.]*([0-9]+)\",1

- Match second parentheses group, then (+) first parentheses group:

Use param2: ^(.{4})(.{4}),2+1 => B123A123 gets matched as A123B123

6. For match and replace a preview is available when using --debug=1
7. The sort function for differences differs from the key function:

function1: sort, param1: | splits the values by the param and sorts

them, e.g. the value c|b|a gets changed to a|b|c

As result of example6 all differences are omitted so these aren’t shown:
 field name: country

 file 1 > USA <

 file 2 > usa <

 field name: tax_rate

 file 1 > 8.5 <

 file 2 > 8,5 <

 field name: last_invoice_date

 file 1 > <

 file 2 > N/A <

 field name: last_invoice_date

 file 1 > N/A <

 file 2 > <

 field name: zip

 file 1 > D-10117 <

 file 2 > 10117 <

 field name: country

 file 1 > DEU <

 file 2 > deu <

 field name: phone

 file 1 > +49 30 8344-21 <

 file 2 > 030 8344 21 <

 field name: tax_rate

 file 1 > 6 <

 file 2 > 6% <

 field name: tax_rate

 file 1 > 09 <

 file 2 > 9 <

 field name: contact

 file 1 > Paul Still <

 file 2 > Mr Paul Still <

 field name: state

 file 1 > FLORIDA <

 file 2 > FL <

Global functions --difa_ci and –difa_tr
The option --difa_ci enables case insensitive comparison for all fields.

The option --difa_tr trims all fields before the comparison.

These two functions also work in combination with the configuration file

above, e.g. --difa_ci creates case insensitive use of param1 and param2.

© Markus Gnam 2024 listcompare tool documentation Page 17 of 38

Compare only the first duplicate row
The option --difa_ofd uses only the first row of duplicate keys from file

2 for the comparison.

Otherwise, all rows with duplicate keys from file2 are compared (default).

Comparing the same file sequentially
When comparing the same file, it is most useful to do this sequentially

line by line to track changes from one line to the next line for the key.

This can be achieved with the --difa_seq=1 command.

To be more precise, the line with the key is compared with the line of the previous occurrence

of the key. So, this command even works for keys that don’t appear in pairs of successive rows.

Example 7 (example7.cmd):
:: Field separator: comma, one header line, Key: field name article_id,

CSV difference file comparing the same file sequentially:

listcompare orders.csv orders.csv --fs=, --csv1 --csv2 --header=1

--key=fname=article_id -a --difa_seq=1 --dife=fnames=order_date,ship_date

--difa_info1=fnames=customer_id,order_date,ship_date

--difa_info2=fnames=customer_id,order_date,ship_date

The --difa_seq command does the sequential comparison for the same file.

With this command initial field values are shown, see result file below.
Note that the --difa_seq command can only be used with difa_level=0 up to difa_level=4.

Info fields
This example introduces two other options: --difa_info1 and --difa_info2
Use field names (--difa_info1=fnames=customer_id,ship_date) or field numbers (--difa_info1=1,4)

For each difference record info fields show values for important fields.
e.g. info 1 -> customer_id: 13, order_date: 2015-11-25, ship_date: 2015-11-25

There are two special cases --difa_info1=all to show key <-> value pairs like above

for all fields and --difa_info1=line to show the original line as value for the key.

Result: Content of file differences_fields.txt:

CSV files differences report for

file 1: orders.csv

file 2: orders.csv

INFORMATION

fields: key field is article_id

all field names of file 1 and file 2 are identical

excluded fields: order_date, ship_date

used option:

compare all fields with same name

except fields listed with option --dife=fnames=order_date,ship_date

© Markus Gnam 2024 listcompare tool documentation Page 18 of 38

compare sequentially with option --difa_seq

initial fields

(field no. "field name" > first field value <):

1 "customer_id" > 13 <

2 "article_id" > 567 <

5 "product_name" > 3-ring staple pack <

RESULTS

Record with key "567" is different:

 file 1 row no. 1 compared with file 2 row no. 2

 info 1 -> customer_id: 13, order_date: 2015-11-25, ship_date: 2015-11-25

 info 2 -> customer_id: 13, order_date: 2015-11-26, ship_date: 2015-11-27

 difference in file 1 field no. 5 - file 2 field no. 5

 field name: product_name

 file 1 > 3-ring staple pack <

 file 2 > 3-ring staple pack white <

Record with key "567" is different:

 file 1 row no. 2 compared with file 2 row no. 3

 info 1 -> customer_id: 13, order_date: 2015-11-26, ship_date: 2015-11-27

 info 2 -> customer_id: 13, order_date: 2015-12-18, ship_date: 2015-12-20

 difference in file 1 field no. 5 - file 2 field no. 5

 field name: product_name

 file 1 > 3-ring staple pack white <

 file 2 > 3-ring staple pack white, plastic <

Special comparison levels with --difa_level
--difa_level=N N=0: Show only differences [default]

 N=1: + no differences for all records [0+1]

 N=2: + no differences only for equal records [0+2]

 N=3: + only record keys for all records [0+3]

 N=4: + only record keys for equal records [0+4]

 N=5: + record keys only in file 1 or in file 2 [0+5]

 N=6: = difa_level 1 + difa_level 5 [1+5]

 N=7: = difa_level 2 + difa_level 5 [2+5]

 N=8: = difa_level 3 + difa_level 5 [3+5]

 N=9: = difa_level 4 + difa_level 5 [4+5]

The difa_level option enables full control about which and how

differences are printed. Keys are always sorted alphabetically.

Example files:

file 1: level_testfile1.csv file 2: level_testfile2.csv

© Markus Gnam 2024 listcompare tool documentation Page 19 of 38

difa_level=0
N=0: Show only differences [default]

Terms:

field differences = different field values

different records = records with field differences

no differences = equal field values

equal records = records with no field differences

records keys = show only the keys and the row numbers

Explanation: The default when comparing is --difa_level=0 to show only

field differences.

Scope: Key in both files

Example:

listcompare level_testfile1.csv level_testfile2.csv -fs=, -csv1 -csv2 --

key=fname=id --header=1 -a --difa_level=0

 Common header:

CSV files differences report for

file 1: level_testfile1.csv

file 2: level_testfile2.csv

INFORMATION

fields: key field is id

all field names of file 1 and file 2 are identical

used option:

compare all fields with same name

compared fields

(file 1 field no. "field name" <-> file 2 field no. "field name"):

1 "id" <-> 1 "id",

2 "city" <-> 2 "city",

3 "state_id" <-> 3 "state_id",

4 "population" <-> 4 "population"

➔
RESULTS

Record with key "4" is different:

 file 1 row no. 3 compared with file 2 row no. 3

 difference in file 1 field no. 4 - file 2 field no. 4

 field name: population

 file 1 > 6076316 <

 file 2 > 6077894 <

difa_level=1
N=1: Show field differences + no differences for all records

Explanation: Additionally to the field differences, also values with no

differences and so completely equal records can be shown.

Scope: Key in both files

Example:

© Markus Gnam 2024 listcompare tool documentation Page 20 of 38

listcompare level_testfile1.csv level_testfile2.csv -fs=, -csv1 -csv2 --

key=fname=id --header=1 -a --difa_level=1

➔
RESULTS

Record with key "2" is equal:

 file 1 row no. 2 compared with file 2 row no. 1

 no difference in file 1 field no. 1 - file 2 field no. 1

 field name: id

 file 1 > 2 <

 file 2 > 2 <

 no difference in file 1 field no. 2 - file 2 field no. 2

 field name: city

 file 1 > Los Angeles <

 file 2 > Los Angeles <

 no difference in file 1 field no. 3 - file 2 field no. 3

 field name: state_id

 file 1 > CA <

 file 2 > CA <

 no difference in file 1 field no. 4 - file 2 field no. 4

 field name: population

 file 1 > 12531334 <

 file 2 > 12531334 <

Record with key "4" is different:

 file 1 row no. 3 compared with file 2 row no. 3

 no difference in file 1 field no. 1 - file 2 field no. 1

 field name: id

 file 1 > 4 <

 file 2 > 4 <

 no difference in file 1 field no. 2 - file 2 field no. 2

 field name: city

 file 1 > Miami <

 file 2 > Miami <

 no difference in file 1 field no. 3 - file 2 field no. 3

 field name: state_id

 file 1 > FL <

 file 2 > FL <

 difference in file 1 field no. 4 - file 2 field no. 4

 field name: population

 file 1 > 6076316 <

 file 2 > 6077894 <

difa_level=2
N=2: Show field differences + no differences only for equal records

Explanation: Additionally to the field differences, show no differences

only for equal records.

Scope: Key in both files

Example:

listcompare level_testfile1.csv level_testfile2.csv -fs=, -csv1 -csv2 --

key=fname=id --header=1 -a --difa_level=2

➔

© Markus Gnam 2024 listcompare tool documentation Page 21 of 38

RESULTS

Record with key "2" is equal:

 file 1 row no. 2 compared with file 2 row no. 1

 no difference in file 1 field no. 1 - file 2 field no. 1

 field name: id

 file 1 > 2 <

 file 2 > 2 <

 no difference in file 1 field no. 2 - file 2 field no. 2

 field name: city

 file 1 > Los Angeles <

 file 2 > Los Angeles <

 no difference in file 1 field no. 3 - file 2 field no. 3

 field name: state_id

 file 1 > CA <

 file 2 > CA <

 no difference in file 1 field no. 4 - file 2 field no. 4

 field name: population

 file 1 > 12531334 <

 file 2 > 12531334 <

Record with key "4" is different:

 file 1 row no. 3 compared with file 2 row no. 3

 difference in file 1 field no. 4 - file 2 field no. 4

 field name: population

 file 1 > 6076316 <

 file 2 > 6077894 <

difa_level=3
N=3: Show field differences + only record keys for all records

Explanation: Show only record keys for both field differences and equal

records.

Scope: Key in both files

Example:

listcompare level_testfile1.csv level_testfile2.csv -fs=, -csv1 -csv2 --

key=fname=id --header=1 -a --difa_level=3

➔
RESULTS

Record with key "2" is equal:

 file 1 row no. 2 compared with file 2 row no. 1

Record with key "4" is different:

 file 1 row no. 3 compared with file 2 row no. 3

difa_level=4
N=4: Show field differences + only record keys for equal records

Explanation: Show field differences plus only record keys for equal

records.

Scope: Key in both files

© Markus Gnam 2024 listcompare tool documentation Page 22 of 38

Example:

listcompare level_testfile1.csv level_testfile2.csv -fs=, -csv1 -csv2 --

key=fname=id --header=1 -a --difa_level=4

➔
RESULTS

Record with key "2" is equal:

 file 1 row no. 2 compared with file 2 row no. 1

Record with key "4" is different:

 file 1 row no. 3 compared with file 2 row no. 3

 difference in file 1 field no. 4 - file 2 field no. 4

 field name: population

 file 1 > 6076316 <

 file 2 > 6077894 <

difa_level=5
N=5: Show field differences + record keys only in file 1 or in file 2

Explanation: Show field differences plus record keys that exist only in

file 1 or in file 2.

Scope: Key in both files, key only in file 1, key only in file 2

Example:

listcompare level_testfile1.csv level_testfile2.csv -fs=, -csv1 -csv2 --

key=fname=id --header=1 -a --difa_level=5

➔
RESULTS

Record with key "1" exists only in file 1 row no. 1

Record with key "3" exists only in file 2 row no. 2

Record with key "4" is different:

 file 1 row no. 3 compared with file 2 row no. 3

 difference in file 1 field no. 4 - file 2 field no. 4

 field name: population

 file 1 > 6076316 <

 file 2 > 6077894 <

difa_level=6
N=6: Show field differences + no differences for all records

 + record keys only in file 1 or in file 2

Explanation: Show field differences and no differences both for different

and equal records plus record keys that exist only in file 1 or in file 2.

Scope: Key in both files, key only in file 1, key only in file 2

Example:

© Markus Gnam 2024 listcompare tool documentation Page 23 of 38

listcompare level_testfile1.csv level_testfile2.csv -fs=, -csv1 -csv2 --

key=fname=id --header=1 -a --difa_level=6

➔
RESULTS

Record with key "1" exists only in file 1 row no. 1

Record with key "2" is equal:

 file 1 row no. 2 compared with file 2 row no. 1

 no difference in file 1 field no. 1 - file 2 field no. 1

 field name: id

 file 1 > 2 <

 file 2 > 2 <

 no difference in file 1 field no. 2 - file 2 field no. 2

 field name: city

 file 1 > Los Angeles <

 file 2 > Los Angeles <

 no difference in file 1 field no. 3 - file 2 field no. 3

 field name: state_id

 file 1 > CA <

 file 2 > CA <

 no difference in file 1 field no. 4 - file 2 field no. 4

 field name: population

 file 1 > 12531334 <

 file 2 > 12531334 <

Record with key "3" exists only in file 2 row no. 2

Record with key "4" is different:

 file 1 row no. 3 compared with file 2 row no. 3

 no difference in file 1 field no. 1 - file 2 field no. 1

 field name: id

 file 1 > 4 <

 file 2 > 4 <

 no difference in file 1 field no. 2 - file 2 field no. 2

 field name: city

 file 1 > Miami <

 file 2 > Miami <

 no difference in file 1 field no. 3 - file 2 field no. 3

 field name: state_id

 file 1 > FL <

 file 2 > FL <

 difference in file 1 field no. 4 - file 2 field no. 4

 field name: population

 file 1 > 6076316 <

 file 2 > 6077894 <

difa_level=7
N=7: Show field differences + no differences only for equal records

 + record keys only in file 1 or in file 2

© Markus Gnam 2024 listcompare tool documentation Page 24 of 38

Explanation: Show field differences plus no differences only for equal

records plus record keys that exist only in file 1 or in file 2.

Scope: Key in both files, key only in file 1, key only in file 2

Example:

listcompare level_testfile1.csv level_testfile2.csv -fs=, -csv1 -csv2 --

key=fname=id --header=1 -a --difa_level=7

➔
RESULTS

Record with key "1" exists only in file 1 row no. 1

Record with key "2" is equal:

 file 1 row no. 2 compared with file 2 row no. 1

 no difference in file 1 field no. 1 - file 2 field no. 1

 field name: id

 file 1 > 2 <

 file 2 > 2 <

 no difference in file 1 field no. 2 - file 2 field no. 2

 field name: city

 file 1 > Los Angeles <

 file 2 > Los Angeles <

 no difference in file 1 field no. 3 - file 2 field no. 3

 field name: state_id

 file 1 > CA <

 file 2 > CA <

 no difference in file 1 field no. 4 - file 2 field no. 4

 field name: population

 file 1 > 12531334 <

 file 2 > 12531334 <

Record with key "3" exists only in file 2 row no. 2

Record with key "4" is different:

 file 1 row no. 3 compared with file 2 row no. 3

 difference in file 1 field no. 4 - file 2 field no. 4

 field name: population

 file 1 > 6076316 <

 file 2 > 6077894 <

difa_level=8
N=8: Show field differences + only record keys for all records

 + record keys only in file 1 or in file 2

Explanation: Show only record keys for both different and equal records.

Additionally, show record keys that exist only in file 1 or in file 2.

Scope: Key in both files, key only in file 1, key only in file 2

Example:

Example 8 (example8.cmd):
:: Field separator: comma, Key: field name id, one header line, CSV

difference file with difa_level=8

© Markus Gnam 2024 listcompare tool documentation Page 25 of 38

listcompare level_testfile1.csv level_testfile2.csv -fs=, -csv1 -csv2 --

key=fname=id --header=1 -a --difa_level=8

➔
RESULTS

Record with key "1" exists only in file 1 row no. 1

Record with key "2" is equal:

 file 1 row no. 2 compared with file 2 row no. 1

Record with key "3" exists only in file 2 row no. 2

Record with key "4" is different:

 file 1 row no. 3 compared with file 2 row no. 3

Use of --difi=keys
If you want to compare only if the keys are present in file 1 and file 2,

you can use the special difi scope “--difi=keys” with difa_level=8.

Example:

listcompare level_testfile1.csv level_testfile2.csv -fs=, -csv1 -csv2 --

key=fname=id --header=1 -a --difa_level=8 --difi=keys

Then, there are no field differences if the keys exist in both files

because the keys always have same values since they are used as keys.

Therefore these lines are shown as “exists both in file 1 and file 2”.

RESULTS

Record with key "1" exists only in file 1 row no. 1

Record with key "2" exists both in file 1 and file 2

 file 1 row no. 2 compared with file 2 row no. 1

Record with key "3" exists only in file 2 row no. 2

Record with key "4" exists both in file 1 and file 2

 file 1 row no. 3 compared with file 2 row no. 3

difa_level=9
N=9: Show field differences + only record keys for equal records

 + record keys only in file 1 or in file 2

Explanation: Show field differences plus only record keys for equal

records plus show record keys that exist only in file 1 or in file 2.

Scope: Key in both files, key only in file 1, key only in file 2

© Markus Gnam 2024 listcompare tool documentation Page 26 of 38

Example:

Example 9 (example9.cmd):
:: Field separator: comma, Key: field name id, one header line, CSV

difference file with difa_level=9

listcompare level_testfile1.csv level_testfile2.csv -fs=, -csv1 -csv2 --

key=fname=id --header=1 -a --difa_level=9

➔
RESULTS

Record with key "1" exists only in file 1 row no. 1

Record with key "2" is equal:

 file 1 row no. 2 compared with file 2 row no. 1

Record with key "3" exists only in file 2 row no. 2

Record with key "4" is different:

 file 1 row no. 3 compared with file 2 row no. 3

 difference in file 1 field no. 4 - file 2 field no. 4

 field name: population

 file 1 > 6076316 <

 file 2 > 6077894 <

Use of --difa_info1=all
difa_level=9 with additional use of the info fields difa_info1=all and

difa_info2=all shows all field names and their values in one single line.

Example:

listcompare level_testfile1.csv level_testfile2.csv -fs=, -csv1 -csv2 --

key=fname=id --header=1 -a --difa_level=9 --difa_info1=all --

difa_info2=all

➔
RESULTS

Record with key "1" exists only in file 1 row no. 1

 info 1 -> id: 1, city: New York, state_id: NY, population: 18680025

Record with key "2" is equal:

 file 1 row no. 2 compared with file 2 row no. 1

 info 1 -> id: 2, city: Los Angeles, state_id: CA, population: 12531334

 info 2 -> id: 2, city: Los Angeles, state_id: CA, population: 12531334

Record with key "3" exists only in file 2 row no. 2

 info 2 -> id: 3, city: Chicago, state_id: IL, population: 8586888

Record with key "4" is different:

 file 1 row no. 3 compared with file 2 row no. 3

 info 1 -> id: 4, city: Miami, state_id: FL, population: 6076316

 info 2 -> id: 4, city: Miami, state_id: FL, population: 6077894

© Markus Gnam 2024 listcompare tool documentation Page 27 of 38

 difference in file 1 field no. 4 - file 2 field no. 4

 field name: population

 file 1 > 6076316 <

 file 2 > 6077894 <

Special cases for keys: Parts and concatenation, functions
 Syntax: Field No[,Substr Pos][,Substr Length]

 function [:Function name 1][,Param1],[,Param2] ...

 next function [:Function name 2][,Param1],[,Param2] ...

 Repeat [+Field No of next field to concatenate]

E.g. listcompare file1.txt file2.txt -–fs=\t --key1=18,1,4:trim+7:leftpad,"13","0" --

key2=17,2:trim+20:trim:leftpad,"13","0"

Explanation for --key1=18,1,4:trim+7:leftpad,"13","0"
From field 18 cut substring 1 to 4 and trim it. Concatenate (+) with the result of:

Left pad field 7 with sign "0" to length 13.

Explanation for --key2=17,2:trim+20:trim:leftpad,"13","0"
From field 17 cut substring 2 to the end and trim it. Concatenate (+) with the result

of: Trim field 20. Left pad this with sign "0" to length 13.

More about functions
Function arguments: The signs [:,+] have to be escaped with a backtick `.

E.g. replacing all dots with commas: --key=fname=price:replace,"\.","`,"

[BTW, the same applies to field names, e.g. --key1=fname=`+code,1,4

For use of spaces in field names put the fname value in double quotes.]

The first argument has to be omitted when calling the function.

The function parameters should always be put in double quotes.

Available functions (only lower case for function names allowed):

leftpad(InputString,MyLength,MySign)

 call: leftpad,MyLength,MySign

 e.g.: --key1=20:leftpad,"13","0"

rightpad(InputString,MyLength,MySign)

 call: rightpad,MyLength,MySign

 e.g.: -key=2:rightpad,"2","0"

trim(InputString)

 call: trim

 e.g.: --key2=17:trim+20:trim:leftpad,"13","0"

ltrim(InputString)

 call: ltrim

 e.g.: --key1=18,1,4:ltrim:rtrim:suffix," "+7:leftpad,"13","0"

rtrim(InputString)

 call: rtrim

 e.g.: --key1=20,2,5+19,1,6:rtrim

lower(InputString)

 call: lower

 e.g.: --key=fname=first_name:lower

upper(InputString)

 call: upper

 e.g.: --key=fname=last_name:upper

prefix(InputString,MyPrefix)

 call: prefix,MyPrefix

 e.g.: --key2=17:ltrim:rtrim:prefix,"supplier no "+20:prefix,"\\t"
 Special case: “\\t” means \t literally. “\t” means a tab character (e.g. see next function)

suffix(InputString,MySuffix)

 call: suffix,MySuffix

 e.g.: --key=1:suffix,"\t"+2:suffix,"\t"+3

© Markus Gnam 2024 listcompare tool documentation Page 28 of 38

 Tip: If you want to concatenate all fields with a tab (“\t”) as default suffix to ensure an

 unambiguous key, use the option –-tabcon (--key=1+2+3 --tabcon is equivalent to the example)

replace(InputString,from (*Global substitute regular expression*),to (*String*))

 call: replace,from,to[,max_replacements]

 e.g.: --key2=fname=GTIN:replace,".$","":leftpad,"12","0"
 There is an optional parameter ”max_replacements” (default 0=unlimited) to limit the number of

 replacements. To replace only the first occurrence use "1": --key2=0:replace,"^[^]`+ ","","1"

 Grouping can be achieved with pairs of parentheses in from and the corresponding $number in to

 e.g. remove leading zeros in numbers (0089 => 89, 00 => 0): --key=1:replace,"^0`+([0-9])","$1"

match(InputString,matchvalue (*First matching regular expression*))

 call: match,matchvalue[,grouping: 1 or 1+2 or 2+1 ...]

 e.g.: --key2=fname=”Article no”:match,"^[0-9]`+"
 There is an optional parameter ”grouping” (default 0=no grouping) to cut groups in parentheses,

 e.g. to swap the first 4 chars with the next 4: --key1=fname=col_2:match,"^(.{4})(.{4}),2`+1"

split(InputString,MySign)

 call: split,MySign

 e.g.: --key2=0,63,979:split,"|"
 Explanation: If the key string to split is "101|102|103|104|105…", this string is split by "|"

 and the keys 101, 102, 103, 104, 105… are generated as if they were each entered line by line.

sort(PartKeys)

 call: sort

 e.g.: --key1=1+2:sort

Special cases: Conditions
They are used for the corresponding key:

 Syntax: field Field No[,Substr Pos][,Substr Length]

 operator :(~ or !~ or == or != or gt or st or bw)

 value :<("regex" or "string")>

 Repeat [:AND or OR:Field No of next condition to check]

E.g. --condition2=0:~:"^0102030405"

This means: For key2 the --condition2 value has to be fulfilled:

If the whole line (0) doesn't start with 0102030405, key2 is skipped.

First parameter, field: Field No: 0 => whole line, 1 => field 1 etc.

The field number may be followed by a substring and a length value.

E.g. 1,2 or 1,2,10

Second parameter, operator: ~ means contains, !~ does not contain, ==

equals to, != does not equal to, gt greater than, st smaller than, bw

between. The last three mentioned operators are numerical comparisons.

Third parameter, value: Regular expression or string in double quotes.

The regular expression or string applies to the field.

E.g. All non-empty entries in field code: --condition1=fname=code:!=:""

E.g. All values greater than 5 in field 1: --condition1=1:gt:"5"

The value for the “bw” operator is a comma separated list for min and max:

E.g. --condition1=1:bw:"5,10"

The logical operators AND or OR can be used for a condition, so

conditions are similar to a database SQL WHERE clause:

AND example:

--condition1=fname=code_no:~:"^20[78]$":AND:fname=is_valid,2,1:==:"1"

This means: For key1 the –condition1 value has to be fulfilled:

Field code_no has to start and end with 207 or 208 and for field is_valid

substring 2 with length 1 has to be equal to "1". If not, key1 is skipped.

OR example:

--condition1=fname=category_name:==:"Games":AND:fname=code_name:~:"Game

Boy":OR:fname=code_name:~:"[bB][lL][uU]-[rR][aA][yY]"

© Markus Gnam 2024 listcompare tool documentation Page 29 of 38

Hints:

- A colon in the third parameter has to be escaped: --condition1=2:~:"`:"

- :AND: can be omitted (this old syntax prior to version 2.3 still works)

- If the --debug option is added, debug_values_file1_skipped.txt and

debug_values_file2_skipped.txt show the lines skipped by the condition.

- Value regex metacharacters meant as string have to be escaped with “\”.

- There are two special field variables line_no1 and line_no2 which means

the line number of file 1 or file 2, e.g. --condition1=line_no1:bw:"3,11"

listcompare testfile_split_a.txt testfile_split_b.txt --fs=\t --

key1=0:split,"\t":match,".{10}" --key2=1 --header1=0 --header2=1 --

condition1=line_no1:==:"1"

The goal is to get the missing tag fields of file 2 (testfile_split_b.txt)

that don’t exist in the first line of file 1 (testfile_split_a.txt). To

do this, the first line of testfile_split_a.txt is split by “\t” into the

keys 0000000001barcode, 0000000002product_name, and 0000000003price and

then the first 10 characters are extracted (=> 0000000001, 0000000002,

0000000003). These keys are compared with field 1 of testfile_split_b.txt.

Result:

© Markus Gnam 2024 listcompare tool documentation Page 30 of 38

Header fields comparison tab (“\t”) separator example (txt files):

listcompare file1.txt file2.txt --key=0:split,"\t" -fs=\t --header=0 --

condition1=line_no1:==:"1" --condition2=line_no2:==:"1"

Header fields comparison comma (“,”) separator example (csv files):

listcompare file1.csv file2.csv --key=0:split,"`," -fs=, --header=0 --

condition1=line_no1:==:"1" --condition2=line_no2:==:"1" --csv1 --csv2

Special cases: --tabcon
If you need a concatenated key from various fields (e.g. from the fields

distributor_number and ean_upc), the option --tabcon is very convenient.

All fields with “+” in the key are concatenated with a tab (“\t”)

(instead of an empty string) where the “+” exists to ensure an

unambiguous key with this option.

Example:

listcompare testfilezo1.txt testfilezo2.txt --fs=\t --header=1 --

key=fname=distributor_number+fname=ean_upc --tabcon --difa

Hint: Instead of --key=fname=distributor_number+fname=ean_upc it is also

possible to use the shortened form --key=fname=distributor_number+ean_upc

Note that when using fname and + to concatenate fields only field names can be used

and no mixture of field names and field numbers. The same applies to the next option.

Special cases: --conuni
With the help of this option, it is possible to get keys from several

fields. E.g. --conuni --key1=fname=term --key2=fname=term1+term2+term3

 It can be compared if the keys from one field (key1: field name
term) exist in any of the three fields of key2 (field names: term1,

term2, term3).

e.g.

file1.csv:

id,term

1,clarinet

2,bassoon

3,saxophone

file2.csv:

id,term1,term2,term3

1,bassoon,saxophone,clarinet

listcompare file1.csv file2.csv --fs=, --csv1 --csv2 --header=1 --lower=1

--conuni --key1=fname=term --key2=fname=term1+term2+term3

 file1_and_file2.txt:
bassoon

clarinet

saxophone

Note that the conuni option is used for keys with “+” in the field list

and cannot be used in combination with the tabcon option since --tabcon

combines keys (-> LOGIGAL AND) while --conuni union keys (-> LOGICAL OR).

© Markus Gnam 2024 listcompare tool documentation Page 31 of 38

Hint: Using --conuni with --value or --join or --joinleft works correctly, but at

first glance the result lines might look a bit strange because keys for both files

and keys only for one file may appear on the same result line. Further, keys only in

file 1 can also appear in the file with keys only in file 2 and the other way round.

Special cases: --key=line_no
In this case line numbers of both files are keys for the comparison.

Special cases: --key=0
Use --key=0 to get the whole line as key. In this case “\t” is the

recommended field separator for additional use of --value and --join.

listcompare testfileA.txt testfileB.txt --fs=\t --key=0 --value --join

Special cases: Field separator
- Default: --fs=" " or no field separator: White space (spaces or tabs)

- Pipe: If you want to use “|” as field separator you cannot use --fs=|

-> Use --fs=^| or --fs="|" instead.

- Other: Tabulator: --fs=\t, One space: -> Use --fs="[]"

Special cases: UTF-8
This program works correctly with ANSI and UTF-8 encoded text files.

A BOM for a UTF-8 file is removed to ensure proper data processing.

Options -utf81 for file 1 and -utf82 for file 2:

These cases are rarely needed, only if you use substrings in keys and

the substring contains multibyte characters with a UTF-8 encoded file,

f.i. --fs=\t --key1=19,4,5 --key2=fname="Column B",2,5 --utf81 --utf82

Special cases: Large file support
This means: If the given megabytes limit N (default: --largefiles=300) is

reached, the file is split into pieces of temporary files with maximal N

megabytes and is later merged together.

This applies only if needed. So, there is no size limit for this program!

Special cases: Debug files
These files are for debug purposes. They can be interesting, e.g.

debug_key_file1.txt shows the whole concatenated sorted key of file1.

debug_file1_unique_keys.txt shows the whole line sorted by unique keys.

e.g. it is even possible to compare the same file using its name twice:

listcompare test.csv test.csv -key1=1+2:sort -key2=1+2:sort -fs=, --debug

debug_file1_unique_keys.txt shows unique results independent of the order

of field 1 and field 2 by using the :sort function for concatenated keys.

debug_file1_or_file2.txt shows sorted union keys instead of intersection.

debug_file1_xor_file2.txt shows the sorted union only of the differences.

Special cases: headers fields
As a very special case, even multiline headers can be used by escaping \n

(which means a newline) with a backtick `, e.g. --key=fname=001`\nbarcode

This also applies to the Special cases: output options --value1, --value2,

--join1, --join2 described below, e.g. --value2=fnames=001`\nbarcode,cpno

As a further special case for keys, a regular expression for the file

name can be used with the “~” operator after fname instead of “=”. So,

the multiline header field above could be written simpler as follows:

--key=fname~"^001"

Important: The regex has to be enclosed in double quotes and it must be

ensured that the result is unique. The search is case insensitive except

character classes ([...]) are used somewhere with the regular expression.

© Markus Gnam 2024 listcompare tool documentation Page 32 of 38

Short excursus on Set Operations
The graphic below shows all possible kinds of set operations (unique sorted keys):

Intersection (file1_and_file2.txt), difference file1 - file2 (only_in_file1.txt),

difference file2 - file1 (only_in_file2.txt), Symmetric Difference

(debug_file1_xor_file2.txt), Union (debug_file1_or_file2.txt).

 file1_and_file2.txt only_in_file1.txt debug_key_file1.txt

 only_in_file2.txt debug_key_file2.txt debug_file1_xor_file2.txt debug_file1_or_file2.txt

Special cases: Output options
The default output for value files and join files is the whole line:

--value1=0, --value2=0, --join1=0, --join2=0

However, with an optional field list only selected fields can be printed.

Either field numbers or field names after “fnames=” can be used.

Examples:

--value1=1 or with field names --value1=fnames=id

--value1=5,6 or with field names --value1=fnames=state,zip

--join2=4,1 or with field names --join2=fnames="Column D","Column A"

Output files
These output files will be created and deleted with program start:

 Note that any existing files will be overwritten, without warning.

 Key files (if results exist):

 file1_and_file2.txt, only_in_file1.txt, only_in_file2.txt

 key_file1_duplicates.txt, key_file2_duplicates.txt

 Value files (if requested and if results exist):

 file1_and_file2_values_file1.txt, file1_and_file2_values_file2.txt

 only_in_file1_values.txt, only_in_file2_values.txt

 Join files (if requested and if results exist):

 joined_key_both_in_file1_and_file2_values.txt

 joined_key_file1_leftjoin_values.txt

 Difference files (if requested and if results exist):

 differences_values.txt, differences_fields.txt

 differences_file1.txt, differences_file2.txt

 Debug files (if requested and if results exist):

 debug_key_file1.txt, debug_key_file2.txt

 debug_file1_or_file2.txt, debug_file1_xor_file2.txt

 debug_values_file1_skipped.txt, debug_values_file2_skipped.txt

 debug_file1_unique_keys.txt, debug_file2_unique_keys.txt

Hints: These output files are created in the current directory (the

directory from where listcompare is called). There should be only one

call of listcompare in the same directory at the same time.

© Markus Gnam 2024 listcompare tool documentation Page 33 of 38

Also, for very big files temporary files are created in the Windows TEMP

folder so do not delete the %TEMP% folder while this program is running.

For value files and join files the file extensions of file1 and file2

remain unchanged. E.g. file1 name: data1.csv

 file1_and_file2_values_file1.csv etc. (see above)

 joined_key_both_in_file1_and_file2_values.csv etc. (see above)
If no file extension is given, the default extension “txt” is used.

All files (e.g. only_in_file1_values.*) are deleted with program start.

If only file1_and_file2.txt exists and not only_in_file1.txt or

only_in_file2.txt, errorlevel 0 is returned, else errorlevel 1.

After calling listcompare you can check: if errorlevel 1 echo NOT EQUAL

The items of these three key files can be counted with the option

--count (or simply -c) => Count the result files

e.g. file1_and_file2.txt (86 items #Identical)

If duplicate keys exist, also the duplicate key items are counted.

Also, the records of all other result files (except debug files) are

counted: record count of value files and join files (excluding header)

and for difference files the number of different (modified) records.

Example:

*** Statistics ***

file1 (ARGV[1]: 4 rows) and file2 (ARGV[2]: 4 rows) successfully processed.

-> Result files:

Key files:

 file1_and_file2.txt (2 items #Identical)

 only_in_file1.txt (1 items #Deletions)

 only_in_file2.txt (1 items #Additions)

Value files:

 file1_and_file2_values_file1.csv (2 records)

 file1_and_file2_values_file2.csv (2 records)

 only_in_file1_values.csv (1 records)

 only_in_file2_values.csv (1 records)

Difference files:

 differences_fields.txt (1 records #Modifications)

Explanation:

“rows” means processed lines including header. If there is a multiline

CSV row, this multiline row is counted as one row.

Note that the “rows” (e.g. file1 (ARGV[1]: 4 rows) are always printed for

the two input files, even without the count command. Normally, the

complete input file is processed except for some line number restriction

conditions, e.g. --condition1=line_no1:==:"1"

“records” means processed lines excluding header. If there is a multiline

CSV row, this multiline row is counted as one row.

#Deletions, #Additions and #Modifications are terms related to the first

file as base file.

Further, the content of the result files can be printed to STDOUT with:

--print=1 (or --print or simply -p) prints all files (except debug files),

--print=2 prints only diffs files (only_in_file1.txt, only_in_file2.txt,

differences_values.txt, differences_fields.txt).

Special cases: --print=file1 prints file1 and exits and --print=file2 prints file2 and exits.

The print option should only be used for small files and correct display is only guaranteed

with ASCII characters. If a file is bigger than 50 MB, only the 15 first lines are printed.

© Markus Gnam 2024 listcompare tool documentation Page 34 of 38

listcompareGI: A graphical user interface for listcompare
The command line interface (CLI) on MS Windows can easily be accessed.

To access the command prompt using the Run window press the Win + R keys

on your keyboard. Then, type cmd and press Enter or click/tap OK.

However, many people prefer a graphical user interface (GUI). This is the

reason why listcompareGI.exe was created: It is a GUI wrapper for calling

listcompare.exe without the need to use the command line. Note that the

command line is still the preferred way to use listcompare, though. For

very big files the GUI looks like it was frozen, but it works correctly.

To use listcompareGI.exe, extract the zip file listcompare.zip with the

original directory structure (including the Examples directory) to a path

from where you wish to use listcompareGI.exe, e.g. the directory c:\utl\.

c:\utl\listcompareGI.exe

c:\utl\listcompare.exe

c:\utl\listcompare_readme.pdf

c:\utl\Examples\...

Then start listcompareGI.exe. If you get a message “Windows protected

your PC – Microsoft Defender SmartScreen prevented an unrecognized app

from starting. Running this app might put your PC at risk”, don’t worry.

Click on “More info” and then “Run anyway”.

listcompareGI.exe

© Markus Gnam 2024 listcompare tool documentation Page 35 of 38

The program starts with a ready-to-use example (example 2 of this manual).

There is a Files section (preselected with the files “names1.txt” and

“names2.txt” of the examples subdirectory), an Options section, an Action

section, and an output section.

Files section
file 1

file 2

The files can be entered directly into the field or chosen with the

button on the right or entered with drag and drop from the Explorer.

Please prefer ASCII file names. ASCII names work, ANSI may or may not

work. The same applies to the Options section.

Options section
All options described above in this manual can be entered here, e.g.

--fs=\t --key=fname=last_name --header=1 --value=1

Action section
When you click on Action! (or use the shortcut F9), listcompare is

started and the program looks like the following picture.

Clicking on Help opens this manual.

© Markus Gnam 2024 listcompare tool documentation Page 36 of 38

Clicking on Load loads a batch file (file name with ending .bat or .cmd,

e.g. c:\utl\Examples\example2.cmd) into this program (using drag & drop

from the Explorer is possible, too). The Files section and the Options

section get updated with the values from the batch file and the program

can be started for these values with the Action! button.

Clicking on Save saves the values from the Files section and the Options

sections into a newly created batch file. The directory and name of the

batch file can be chosen. Later, this batch file can be loaded again into

this program with the Load button.

Output section
The output section shows the results text in green. If something went

wrong (“ERROR”), the text is shown in red. If there is a “WARNING”, the

text gets turned into yellow. The result files directory can be accessed

in the Explorer with the Explore button. The listcompareGI result files

are located in the listcompareGI.exe directory, in this example c:\utl\.

The file differences_fields.txt can be opened with the Report button and

the results window text can be cleared with the Clear button.

CSV Report example: Please load c:\utl\Examples\example9.cmd.

Any file in the output section can be opened by a triple-click in the

results window text which selects the entire line. Then, with a context

menu click on “Open” the file can be opened with its default application.

A click on “Open with...” opens the MS Windows File Open with dialog box.

Example 1: Open the first input file

So, the first input file can be selected by a triple-click in the first

line and then be opened with a context menu click on Open or Open with….

Example 2: Open file1_and_file2.txt

Note that the three Key files (file1_and_file2.txt, only_in_file1.txt,

only_in_file2.txt) can also be opened with the corresponding buttons:

© Markus Gnam 2024 listcompare tool documentation Page 37 of 38

Version history
Version 3.5.2.8 20240401

- New option print added for printing the result files to STDOUT.

- For keys with a field name a regular expression can now be used.

 e.g. --key=fname~"^012345" matches the field name 012345tomatoes.

Version 3.5.1.8 20231126

- New option count added for counting the result files.

 e.g. file1_and_file2.txt (86 items #Identical)

- New option version added.

Version 3.5.0.7 20230312

- New option conuni added enabling getting keys from several fields.

- Conditions: New operator “bw” and scopes line_no1, line_no2 added.

- difa_info1 and difa_info2 special scopes line and all added.

- difi special scope keys added.

- function split added.

Version 3.4.1.4 20220702

- New option in combination with the difa option added: --difa_level

- File debug_file1_xor_file2.txt added to enable all set operations.

Version 3.4.0.5 20220205

- New output options for value files and join files added:

 value1, value2, join1, join2

- It is now possible to use joins with different field separators.

Version 3.3.0.6 20211117

- New options in combination with the difa and join options added:

 difa_fun, difa_ci, difa_tr, difa_ofd, join_ofd

Version 3.2.0.3 20210828

- Merging engine for big files improved by largefiles option changes:

 --largefiles=N: Use N megabytes as maximal size for temporary files

 (default N=300). (The old option used N lines (default N=1000000)).

Version 3.1.0.3 20210621

- New options in combination with the difa option added:

 difa_info1, difa_info2, difa_seq

Version 3.0.0.2 20210209

- difa option added. The new generation 3 of this software is able to

 compare CSV files on field level as a full featured comparison tool.

Version 2.3.0.0 20200609

- conditions completely reworked:

 Logical operators AND and OR introduced.

 Conditions are now similar to a SQL WHERE clause.

Version 2.2.0.0 20200113

- joinhint option added.

- function match added.

- tabcon option added.

Version 2.1.0.3 20190614

- joinleft option added. Since version 2.1 of this software it is

 possible to generate left join files exactly like a database

 left join on a key for two tables.

© Markus Gnam 2024 listcompare tool documentation Page 38 of 38

Version 2.0.1.9 20181018

- Arguments limits (no use of the special signs [:,+]) overcome:

 Backtick (`) can now be used to escape a plus sign, comma or colon:

 This applies to functions, field names (fname), conditions (colon).

Version 2.0.0.1 20180121

- join option added. The new generation 2 of this software is able to

 behave exactly like a database inner join on a key for two tables.

- function replace added.

Version 1.0.1.3 20171004

- function rightpad added.

- function arguments check improved.

- Diffs files differences_file1.txt and differences_file2.txt added.

Version 1.0.0.0 20170608

- Initial version.

